Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 208
Filtrar
1.
Cells ; 13(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38667272

RESUMO

Clonal hematopoiesis of indeterminate potential (CHIP) refers to the phenomenon where a hematopoietic stem cell acquires fitness-increasing mutation(s), resulting in its clonal expansion. CHIP is frequently observed in multiple myeloma (MM) patients, and it is associated with a worse outcome. High-throughput amplicon-based single-cell DNA sequencing was performed on circulating CD34+ cells collected from twelve MM patients before autologous stem cell transplantation (ASCT). Moreover, in four MM patients, longitudinal samples either before or post-ASCT were collected. Single-cell sequencing and data analysis were assessed using the MissionBio Tapestri® platform, with a targeted panel of 20 leukemia-associated genes. We detected CHIP pathogenic mutations in 6/12 patients (50%) at the time of transplant. The most frequently mutated genes were TET2, EZH2, KIT, DNMT3A, and ASXL1. In two patients, we observed co-occurring mutations involving an epigenetic modifier (i.e., DNMT3A) and/or a gene involved in splicing machinery (i.e., SF3B1) and/or a tyrosine kinase receptor (i.e., KIT) in the same clone. Longitudinal analysis of paired samples revealed a positive selection of mutant high-fitness clones over time, regardless of their affinity with a major or minor sub-clone. Copy number analysis of the panel of all genes did not show any numerical alterations present in stem cell compartment. Moreover, we observed a tendency of CHIP-positive patients to achieve a suboptimal response to therapy compared to those without. A sub-clone dynamic of high-fitness mutations over time was confirmed.


Assuntos
Hematopoiese Clonal , Mieloma Múltiplo , Mutação , Análise de Célula Única , Humanos , Mieloma Múltiplo/genética , Análise de Célula Única/métodos , Mutação/genética , Masculino , Pessoa de Meia-Idade , Feminino , Hematopoiese Clonal/genética , Idoso , Transplante de Células-Tronco Hematopoéticas , Análise de Sequência de DNA/métodos , Adulto , Evolução Clonal/genética
2.
Nat Med ; 30(3): 810-817, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38454125

RESUMO

Age is a predominant risk factor for acute kidney injury (AKI), yet the biological mechanisms underlying this risk are largely unknown. Clonal hematopoiesis of indeterminate potential (CHIP) confers increased risk for several chronic diseases associated with aging. Here we sought to test whether CHIP increases the risk of AKI. In three population-based epidemiology cohorts, we found that CHIP was associated with a greater risk of incident AKI, which was more pronounced in patients with AKI requiring dialysis and in individuals with somatic mutations in genes other than DNMT3A, including mutations in TET2 and JAK2. Mendelian randomization analyses supported a causal role for CHIP in promoting AKI. Non-DNMT3A-CHIP was also associated with a nonresolving pattern of injury in patients with AKI. To gain mechanistic insight, we evaluated the role of Tet2-CHIP and Jak2V617F-CHIP in two mouse models of AKI. In both models, CHIP was associated with more severe AKI, greater renal proinflammatory macrophage infiltration and greater post-AKI kidney fibrosis. In summary, this work establishes CHIP as a genetic mechanism conferring impaired kidney function recovery after AKI via an aberrant inflammatory response mediated by renal macrophages.


Assuntos
Injúria Renal Aguda , Hematopoiese Clonal , Animais , Camundongos , Humanos , Hematopoiese Clonal/genética , Hematopoese/genética , Fatores de Risco , Envelhecimento/genética , Injúria Renal Aguda/genética , Mutação/genética
4.
Semin Hematol ; 61(1): 51-60, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38431463

RESUMO

Loss of function TET2 mutation (TET2MT) is one of the most frequently observed lesions in clonal hematopoiesis (CH). TET2 a member TET-dioxygenase family of enzymes that along with TET1 and TET3, progressively oxidize 5-methyl cytosine (mC) resulting in regulated demethylation of promoter, enhancer and silencer elements of the genome. This process is critical for efficient transcription that determine cell lineage fate, proliferation and survival and the maintenance of the genomic fidelity with aging of the organism. Partial or complete loss-of-function TET2 mutations create regional and contextual DNA hypermethylation leading to gene silencing or activation that result in skewed myeloid differentiation and clonal expansion. In addition to myeloid skewing, loss of TET2 creates differentiation block and provides proliferative advantage to hematopoietic stem and progenitor cells (HSPCs). TET2MT is a prototypical lesion in CH, since the mutant clones dominate during stress hematopoiesis and often associates with evolution of myeloid malignancies. TET2MT clones has unique privilege to create and persist in pro-inflammatory milieu. Despite extensive knowledge regarding biochemical mechanisms underlying distorted myeloid differentiation, and enhanced self-replication of TET2MT HSPC, the mechanistic link of various pathogenesis associated with TET2 loss in CHIP is less understood. Here we review the recent development in TET2 biology and its probable mechanistic link in CH with aging and inflammation. We also explored the therapeutic strategies of targeting TET2MT associated CHIP and the utility of targeting TET2 in normal hematopoiesis and somatic cell reprograming. We explore the biochemical mechanisms and candidate therapies that emerged in last decade of research.


Assuntos
Hematopoiese Clonal , Dioxigenases , Humanos , Hematopoiese Clonal/genética , Mutação , Metilação de DNA , Diferenciação Celular/genética , Hematopoese/genética , Oxigenases de Função Mista/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dioxigenases/genética
5.
Semin Hematol ; 61(1): 9-15, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38429201

RESUMO

Clonal hematopoiesis (CH) in autologous transplant recipients and allogeneic transplant donors has genetic features and clinical associations that are distinct from each other and from non-cancer populations. CH in the setting of autologous transplant is enriched for mutations in DNA damage response pathway genes and is associated with adverse outcomes, including an increased risk of therapy-related myeloid neoplasm and inferior overall survival. Studies of CH in allogeneic transplant donors have yielded conflicting results but have generally shown evidence of potentiated alloimmunity in recipients, with some studies showing an association with favorable recipient outcomes.


Assuntos
Hematopoiese Clonal , Transplante de Células-Tronco Hematopoéticas , Humanos , Hematopoiese Clonal/genética , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/métodos , Transtornos Mieloproliferativos , Transplante Autólogo
6.
Herz ; 49(2): 105-110, 2024 Mar.
Artigo em Alemão | MEDLINE | ID: mdl-38424288

RESUMO

Cardiovascular diseases are among the leading causes of death worldwide, with well-known modifiable risk factors, such as smoking, overweight, lipid metabolism disorders, lack of physical activity and high blood pressure playing a significant role. Recent studies have now identified "clonal hematopoiesis" as a novel blood-based risk factor. Clonal hematopoiesis arises from mutations in hematopoietic stem cells, which lead to the expansion of mutated blood cells. Mutated cell clones can be detected in over 40% of individuals over 50 years old, with more than 15% of those over 90 years old harboring large clones. Surprisingly, mutated cells predispose to the development of leukemia only to a minor extent, leading to the term clonal hematopoiesis of indeterminate potential (CHIP); however, it has been shown that CHIP is associated with an increased risk of cardiovascular diseases. Individuals with CHIP-associated gene mutations have an elevated risk of atherosclerotic vascular diseases, stroke and thrombosis. Patients with heart failure with reduced ejection fraction (HFrEF), whether of ischemic or non-ischemic origin and patients with heart failure with preserved ejection fraction (HFpEF) exhibit an increased number of mutated cells in the blood. The presence of CHIP mutations is linked to a poorer prognosis in patients with existing cardiovascular diseases. Future research should aim at a better understanding of the specific effects of different mutations, clone sizes and combinations to develop personalized therapeutic approaches. Various anti-inflammatory therapeutic drugs are available, which can be tested in controlled studies.


Assuntos
Doenças Cardiovasculares , Insuficiência Cardíaca , Humanos , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Hematopoiese Clonal/genética , Doenças Cardiovasculares/genética , Insuficiência Cardíaca/complicações , Hematopoese/genética , Volume Sistólico , Mutação/genética
8.
Semin Hematol ; 61(1): 61-67, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38311514

RESUMO

Clonal hematopoiesis (CH) is an entity hallmarked by skewed hematopoiesis with persistent overrepresentation of cells from a common stem/progenitor lineage harboring single-nucleotide variants and/or insertions/deletions. CH is a common and age-related phenomenon that is associated with an increased risk of hematological malignancies, cardiovascular disease, and all-cause mortality. While CH is a term of the hematological aspect, there exists a complex interaction with other organ systems, especially the cardiovascular system. The strongest factor in the development of CH is aging, however, other multiple factors also affect the development of CH including lifestyle-related factors and co-morbid diseases. In recent years, germline genetic factors have been linked to CH risk. In this review, we synthesize what is currently known about how genetic variation affects the risk of CH, how this genetic architecture intersects with myeloid neoplasms, and future prospects for CH.


Assuntos
Hematopoiese Clonal , Neoplasias Hematológicas , Humanos , Hematopoiese Clonal/genética , Mutação , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patologia , Hematopoese/genética , Células Germinativas/patologia
9.
Semin Hematol ; 61(1): 3-8, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38423847

RESUMO

Clonal hematopoiesis (CH) has been associated with aging, occurring in about 10% of individuals aged >70 years, and immune dysfunction. Aged hematopoietic stem and progenitor cells exhibit pathological changes in immune function and activation of inflammatory pathways. CH clones commonly harbor a loss of function mutation in DNMT3A or TET2, which causes increased expression of inflammatory signaling genes, a proposed mechanism connected to CH and the development of age-related diseases. Additionally, inflammation may stress the hematopoietic compartment, driving the expansion of mutant clones. While the epidemiologic overlap between CH, hematologic malignancies, and atherosclerotic cardiovascular diseases has been reported, the mechanisms linking these concepts are largely unknown and merit much further investigation. Here, we review studies highlighting the interplay between CH, inflamm-aging, the immune system, and the prevalence of CH in autoimmune diseases.


Assuntos
Doenças Autoimunes , Hematopoiese Clonal , Humanos , Hematopoiese Clonal/genética , Autoimunidade , Hematopoese/genética , Envelhecimento/genética , Envelhecimento/metabolismo , Envelhecimento/patologia , Mutação , Doenças Autoimunes/genética
10.
Proc Natl Acad Sci U S A ; 121(8): e2319364121, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38359296

RESUMO

Clonal hematopoiesis (CH) represents the clonal expansion of hematopoietic stem cells and their progeny driven by somatic mutations. Accurate risk assessment of CH is critical for disease prevention and clinical decision-making. The size of CH has been showed to associate with higher disease risk, yet, factors influencing the size of CH are unknown. In addition, the characteristics of CH in long-lived individuals are not well documented. Here, we report an in-depth analysis of CH in longevous (≥90 y old) and common (60~89 y old) elderly groups. Utilizing targeted deep sequencing, we found that the development of CH is closely related to age and the expression of aging biomarkers. The longevous elderly group exhibited a significantly higher incidence of CH and significantly higher frequency of TET2 and ASXL1 mutations, suggesting that certain CH could be beneficial to prolong life. Intriguingly, the size of CH neither correlates significantly to age, in the range of 60 to 110 y old, nor to the expression of aging biomarkers. Instead, we identified a strong correlation between large CH size and the number of mutations per individual. These findings provide a risk assessment biomarker for CH and also suggest that the evolution of the CH is influenced by factor(s) in addition to age.


Assuntos
Hematopoiese Clonal , Hematopoese , Humanos , Idoso , Hematopoiese Clonal/genética , Hematopoese/genética , Envelhecimento/genética , Mutação , Biomarcadores
11.
JAMA Netw Open ; 7(1): e2353244, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38270950

RESUMO

Importance: Clonal hematopoiesis of indeterminate potential (CHIP), the age-related clonal expansion of hematopoietic stem cells with leukemogenic acquired genetic variants, is associated with incident heart failure (HF). Objective: To evaluate the associations of CHIP and key gene-specific CHIP subtypes with incident HF with preserved ejection fraction (HFpEF) and reduced ejection fraction (HFrEF). Design, Setting, and Participants: This population-based cohort study included participants from 2 racially diverse prospective cohort studies with uniform HF subtype adjudication: the Jackson Heart Study (JHS) and Women's Health Initiative (WHI). JHS participants were enrolled during 2000 to 2004 and followed up through 2016. WHI participants were enrolled during 1993 to 1998 and followed up through 2022. Participants who underwent whole-genome sequencing, lacked prevalent HF at baseline, and were followed up for HF adjudication were included. Follow-up occurred over a median (IQR) of 12.0 (11.0-12.0) years in the JHS and 15.3 (9.0-22.0) years in the WHI. Statistical analysis was performed from June to December 2023. Exposures: Any CHIP and the most common gene-specific CHIP subtypes (DNMT3A and TET2 CHIP). Main Outcomes and Measures: First incident hospitalized HF events were adjudicated from hospital records and classified as HFpEF (left ventricular ejection fraction ≥50%) or HFrEF (ejection fraction <50%). Results: A total of 8090 participants were included; 2927 from the JHS (median [IQR] age, 56 [46-65] years; 1846 [63.1%] female; 2927 [100.0%] Black or African American) and 5163 from the WHI (median [IQR] age, 67 [62-72] years; 5163 [100.0%] female; 29 [0.6%] American Indian or Alaska Native, 37 [0.7%] Asian or Pacific Islander, 1383 [26.8%] Black or African American, 293 [5.7%] Hispanic or Latinx, 3407 [66.0%] non-Hispanic White, and 14 [0.3%] with other race and ethnicity). The multivariable-adjusted hazard ratio (HR) for composite CHIP and HFpEF was 1.28 (95% CI, 0.93-1.76; P = .13), and for CHIP and HFrEF it was 0.79 (95% CI, 0.49-1.25; P = .31). TET2 CHIP was associated with HFpEF in both cohorts (meta-analyzed HR, 2.35 [95% CI, 1.34 to 4.11]; P = .003) independent of cardiovascular risk factors and coronary artery disease. Analyses stratified by C-reactive protein (CRP) in the WHI found an increased risk of incident HFpEF in individuals with CHIP and CRP greater than or equal to 2 mg/L (HR, 1.94 [95% CI, 1.20-3.15]; P = .007), but not in those with CHIP and CRP less than 2 mg/L or those with CRP greater than or equal to 2 mg/L without CHIP, when compared with participants without CHIP and CRP less than 2 mg/L. Conclusions and Relevance: In this cohort study, TET2 CHIP was an independent risk factor associated with incident HFpEF. This finding may have implications for the prevention and management of HFpEF, including development of targeted therapies.


Assuntos
Hematopoiese Clonal , Insuficiência Cardíaca , Humanos , Feminino , Pessoa de Meia-Idade , Idoso , Masculino , Hematopoiese Clonal/genética , Insuficiência Cardíaca/epidemiologia , Insuficiência Cardíaca/genética , Estudos de Coortes , Estudos Prospectivos , Volume Sistólico , Função Ventricular Esquerda , Proteína C-Reativa
12.
Eur Heart J ; 45(10): 778-790, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38231881

RESUMO

BACKGROUND AND AIMS: Both clonal haematopoiesis of indeterminate potential (CHIP) and atrial fibrillation (AF) are age-related conditions. This study investigated the potential role of CHIP in the development and progression of AF. METHODS: Deep-targeted sequencing of 24 CHIP mutations (a mean depth of coverage = 1000×) was performed in 1004 patients with AF and 3341 non-AF healthy subjects. Variant allele fraction ≥ 2.0% indicated the presence of CHIP mutations. The association between CHIP and AF was evaluated by the comparison of (i) the prevalence of CHIP mutations between AF and non-AF subjects and (ii) clinical characteristics discriminated by CHIP mutations within AF patients. Furthermore, the risk of clinical outcomes-the composite of heart failure, ischaemic stroke, or death-according to the presence of CHIP mutations in AF was investigated from the UK Biobank cohort. RESULTS: The mean age was 67.6 ± 6.9 vs. 58.5 ± 6.5 years in AF (paroxysmal, 39.0%; persistent, 61.0%) and non-AF cohorts, respectively. CHIP mutations with a variant allele fraction of ≥2.0% were found in 237 (23.6%) AF patients (DNMT3A, 13.5%; TET2, 6.6%; and ASXL1, 1.5%) and were more prevalent than non-AF subjects [356 (10.7%); P < .001] across the age. After multivariable adjustment (age, sex, smoking, body mass index, diabetes, and hypertension), CHIP mutations were 1.4-fold higher in AF [adjusted odds ratio (OR) 1.38; 95% confidence interval 1.10-1.74, P < .01]. The ORs of CHIP mutations were the highest in the long-standing persistent AF (adjusted OR 1.50; 95% confidence interval 1.14-1.99, P = .004) followed by persistent (adjusted OR 1.44) and paroxysmal (adjusted OR 1.33) AF. In gene-specific analyses, TET2 somatic mutation presented the highest association with AF (adjusted OR 1.65; 95% confidence interval 1.05-2.60, P = .030). AF patients with CHIP mutations were older and had a higher prevalence of diabetes, a longer AF duration, a higher E/E', and a more severely enlarged left atrium than those without CHIP mutations (all P < .05). In UK Biobank analysis of 21 286 AF subjects (1297 with CHIP and 19 989 without CHIP), the CHIP mutation in AF is associated with a 1.32-fold higher risk of a composite clinical event (heart failure, ischaemic stroke, or death). CONCLUSIONS: CHIP mutations, primarily DNMT3A or TET2, are more prevalent in patients with AF than non-AF subjects whilst their presence is associated with a more progressive nature of AF and unfavourable clinical outcomes.


Assuntos
Fibrilação Atrial , Isquemia Encefálica , Diabetes Mellitus , Insuficiência Cardíaca , AVC Isquêmico , Acidente Vascular Cerebral , Idoso , Humanos , Pessoa de Meia-Idade , Fibrilação Atrial/epidemiologia , Fibrilação Atrial/genética , Fibrilação Atrial/complicações , Isquemia Encefálica/complicações , Hematopoiese Clonal/genética , Estudos de Coortes , População do Leste Asiático , Insuficiência Cardíaca/complicações , AVC Isquêmico/complicações , Acidente Vascular Cerebral/epidemiologia
13.
Arterioscler Thromb Vasc Biol ; 44(3): 690-697, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38269586

RESUMO

BACKGROUND: Clonal hematopoiesis of indeterminate potential (CHIP) is an acquired genetic risk factor for both leukemia and cardiovascular disease. It results in proinflammatory myeloid cells in the bone marrow and blood; however, how these cells behave in the cardiovascular tissue remains unclear. Our study aimed at investigating whether CHIP-mutated macrophages accumulate preferentially in cardiovascular tissues and examining the transcriptome of tissue macrophages from DNMT3A (DNA methyltransferase 3 alpha) or TET2 (Tet methylcytosine dioxygenase 2) mutation carriers. METHODS: We recruited patients undergoing carotid endarterectomy or heart surgeries to screen for CHIP mutation carriers using targeted genomic sequencing. Myeloid and lymphoid cells were isolated from blood and cardiovascular tissue collected during surgeries using flow cytometry. DNA and RNA extracted from these sorted cells were subjected to variant allele frequency measurement using droplet digital polymerase chain reaction and transcriptomic profiling using bulk RNA sequencing, respectively. RESULTS: Using droplet digital polymerase chain reaction, we detected similar variant allele frequency of CHIP in monocytes from blood and macrophages from atheromas and heart tissues, even among heart macrophages with and without CCR2 (C-C motif chemokine receptor 2) expression. Bulk RNA sequencing revealed a proinflammatory gene profile of myeloid cells from DNMT3A or TET2 mutation carriers compared with those from noncarriers. CONCLUSIONS: Quantitatively, CHIP-mutated myeloid cells did not preferentially accumulate in cardiovascular tissues, but qualitatively, they expressed a more disease-prone phenotype.


Assuntos
Doenças Cardiovasculares , Hematopoiese Clonal , Humanos , Hematopoiese Clonal/genética , Hematopoese/genética , Macrófagos/metabolismo , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Mutação
14.
PLoS One ; 19(1): e0282546, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38198467

RESUMO

Whether Clonal Hematopoiesis (CH) represents a risk factor for severity of the COVID-19 disease remains a controversial issue. We report the first high- sensitivity analysis of CH in COVID-19 patients (threshold of detection at 0.5% vs 1 or 2% in previous studies). We analyzed 24 patients admitted to ICU for COVID-19 (COV-ICU) and 19 controls, including healthy subjects and asymptomatic SARS-CoV2-positive individuals. Despite the significantly higher numbers of CH mutations identified (80% mutations with <2% variant allele frequency, VAF), we did not find significant differences between COV-ICU patients and controls in the prevalence of CH or in the numbers, VAF or functional categories of the mutated genes, suggesting that CH is not overrepresented in patients with COVID-19. However, when considering potential drivers CH mutations (CH-PD), COV-ICU patients showed higher clonal complexity, in terms of both mutation numbers and VAF, and enrichment of variants reported in myeloid neoplasms. However, we did not score an impact of increased CH-PD on patient survival or clinical parameters associated with inflammation. These data suggest that COVID-19 influence the clonal composition of the peripheral blood and call for further investigations addressing the potential long-term clinical impact of CH on people experiencing severe COVID-19. We acknowledge that it will indispensable to perform further studies on larger patient cohorts in order to validate and generalize our conclusions. Moreover, we performed CH analysis at a single time point. It will be necessary to consider longitudinal approaches with long periods of follow-up in order to assess if the COVID-19 disease could have an impact on the evolution of CH and long-term consequences in patients that experienced severe COVID-19.


Assuntos
COVID-19 , Hematopoiese Clonal , Humanos , Hematopoiese Clonal/genética , RNA Viral , COVID-19/genética , SARS-CoV-2/genética , Mutação
15.
Blood ; 143(7): 573-581, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37992214

RESUMO

ABSTRACT: The study of somatic mutations and the associated clonal mosaicism across the human body has transformed our understanding of aging and its links to cancer. In proliferative human tissues, stem cells compete for dominance, and those with an advantage expand clonally to outgrow their peers. In the hematopoietic system, such expansion is termed clonal hematopoiesis (CH). The forces driving competition, namely heterogeneity of the hematopoietic stem cell (HSC) pool and attrition of their environment, become increasingly prominent with age. As a result, CH becomes progressively more common through life to the point of becoming essentially ubiquitous. We are beginning to unravel the specific intracellular and extracellular factors underpinning clonal behavior, with somatic mutations in specific driver genes, inflammation, telomere maintenance, extraneous exposures, and inherited genetic variation among the important players. The inevitability of CH with age combined with its unequivocal links to myeloid cancers poses a scientific and clinical challenge. Specifically, we need to decipher the factors determining clonal behavior and develop prognostic tools to identify those at high risk of malignant progression, for whom preventive interventions may be warranted. Here, we discuss how recent advances in our understanding of the natural history of CH have provided important insights into these processes and helped define future avenues of investigation.


Assuntos
Transtornos Mieloproliferativos , Neoplasias , Humanos , Hematopoiese Clonal/genética , Hematopoese/genética , Mutação , Transtornos Mieloproliferativos/genética , Neoplasias/genética
16.
Cancer Discov ; 14(1): OF5, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-37921439

RESUMO

SRCAP mutations promote clonal expansion of hematopoietic stem cells (HSC) in response to cellular stress.


Assuntos
Hematopoiese Clonal , Hematopoese , Humanos , Hematopoiese Clonal/genética , Hematopoese/genética , Mutação , Adenosina Trifosfatases/genética
17.
Curr Hematol Malig Rep ; 19(1): 35-44, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38095828

RESUMO

PURPOSE OF REVIEW: Telomere biology disorders (TBDs) are germline-inherited conditions characterized by reduction in telomerase function, accelerated shortening of telomeres, predisposition to organ-failure syndromes, and increased risk of neoplasms, especially myeloid malignancies. In normal cells, critically short telomeres trigger apoptosis and/or cellular senescence. However, the evolutionary mechanism by which TBD-related telomerase-deficient cells can overcome this fitness constraint remains elusive. RECENT FINDINGS: Preliminary data suggests the existence of adaptive somatic mosaic states characterized by variants in TBD-related genes and maladaptive somatic mosaic states that attempt to overcome hematopoietic fitness constraints by alternative methods leading to clonal hematopoiesis. TBDs are both rare and highly heterogeneous in presentation, and the association of TBD with malignant transformation is unclear. Understanding the clonal complexity and mechanisms behind TBD-associated molecular signatures that lead to somatic adaptation in the setting of defective hematopoiesis will help inform therapy and treatment for this set of diseases.


Assuntos
Telomerase , Humanos , Telomerase/genética , Telomerase/metabolismo , Hematopoiese Clonal/genética , Telômero/genética , Telômero/metabolismo , Hematopoese/genética , Biologia
18.
J Cardiovasc Med (Hagerstown) ; 25(1): 1-12, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38051659

RESUMO

Myeloproliferative neoplasms, including polycythemia vera, essential thrombocythemia, and myelofibrosis, are characterized by somatic gene mutations in bone marrow stem cells, which trigger an inflammatory response influencing the development of associated cardiovascular complications. In recent years, the same mutations were found in individuals with cardiovascular diseases even in the absence of hematological alterations. These genetic events allow the identification of a new entity called 'clonal hematopoiesis of indeterminate potential' (CHIP), as it was uncertain whether it could evolve toward hematological malignancies. CHIP is age-related and, remarkably, myocardial infarction, stroke, and heart failure were frequently reported in these individuals and attributed to systemic chronic inflammation driven by the genetic mutation. We reviewed the connection between clonal hematopoiesis, inflammation, and cardiovascular diseases, with a practical approach to improve clinical practice and highlight the current unmet needs in this area of knowledge.


Assuntos
Cardiologistas , Doenças Cardiovasculares , Policitemia Vera , Humanos , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/complicações , Hematopoiese Clonal/genética , Policitemia Vera/complicações , Policitemia Vera/genética , Mutação , Inflamação
19.
Hematology Am Soc Hematol Educ Program ; 2023(1): 299-304, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066913

RESUMO

Healthy volunteer donors are committed to contributing key medical resources. Repeated, regular donation of whole blood represents a specific trigger of hematopoietic stress. Hematopoietic stem cells (HSCs) are known to respond to environmental triggers by altering their differentiation and/or proliferative behavior. This can manifest in long-term changes in the clonal dynamics of HSCs, such as the age-associated expansion of HSCs carrying somatic mutations in genes associated with hematologic cancers-that is, clonal hematopoiesis (CH). A recent study revealed a higher prevalence of CH in frequent donors driven by low-risk mutations in genes encoding for epigenetic modifiers, with DNMT3A and TET2 being the most common. No difference in the prevalence of known preleukemic driver mutations was detected between the cohorts, underscoring the safety of repetitive blood donations. Functional analyses suggest a link between the presence of selected DNMT3A mutations found in the frequent donor group and the responsiveness of the cells to the molecular mediator of bleeding stress, erythropoietin (EPO), but not inflammation. These findings define EPO as one of the environmental factors that provide a fitness advantage to specific mutant HSCs. Analyzing CH prevalence and characteristics in other donor cohorts will be important to comprehensively assess the health risks associated with the different types of donation.


Assuntos
Hematopoiese Clonal , DNA Metiltransferase 3A , Humanos , Hematopoiese Clonal/genética , Doadores de Sangue , Hematopoese/genética , Células-Tronco Hematopoéticas , Mutação
20.
Leuk Res ; 135: 107419, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37956474

RESUMO

Clonal hematopoiesis (CH) is defined by the presence of an expanded clonal hematopoietic cell population due to an acquired mutation conferring a selective growth advantage and is known to predispose to hematologic malignancy. In this review, we discuss sequencing methods for CH detection in bulk sequencing data and corresponding bioinformatic approaches for variant calling, filtering, and curation. We detail practical recommendations for CH calling. Finally, we discuss how improvements in CH sequencing and bioinformatic approaches will enable the characterization of CH trajectories, its impact on human health, and therapeutic approaches to mitigate its adverse effects.


Assuntos
Hematopoiese Clonal , Neoplasias Hematológicas , Humanos , Hematopoiese Clonal/genética , Hematopoese/genética , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/terapia , Neoplasias Hematológicas/patologia , Mutação , Células Clonais/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...